The solar virtual observatory from the HESSI perspective

André Csillaghy for the HESSI Software Team Space Sciences Laboratory University of California, Berkeley

HESSI SoftwareTeam

PI: Robert Lin (UCB)

Co-I: Dick Canfield (MSU), Brian Dennis (GSFC), Gordon Hurford (UCB)

Associated personnel: David Ardila (UCB), Markus Aschwanden (LMSAL) Robert Bentley (MSSL), Merrick Berg (GSFC), Martin Fivian (PSI), Chris Johns-Krull (UCB), Säm Krucker (UCB), Tom Metcalf (LMSAL), Jim McTiernan (UCB), Ed Schmahl (UMD), Richard Schwartz (GSFC), David Smith (UCB), Kim Tolbert (GSFC), Greg Walton (UCB), Dominic Zarro (GSFC)

Outline

- HESSI (High Energy Solar Spectroscopic Imager) short presentation
- HESSI involvement in data integration
- Data integration issues and solutions
- Current work

HESSI Science Objective

To explore the basic physics of particle acceleration and explosive energy release in Solar Flares

- Impulsive Energy Release in the Corona
- Acceleration of Electrons, Protons, and Ions
- Plasma Heating to Tens of Millions of degrees
- Energy and Particle Transport and Dissipation

HESSI Primary Observations

- Hard X-ray Images
 - Angular resolution as fine as 2 arcseconds
 - Temporal resolution as fine as 10 ms
- Energy resolution of <1 keV from 3 keV to 400 keV
- High Resolution X-ray and Gamma-ray Spectra
 - keV energy resolution
 - To energies as high as 20 MeV

HESSI Firsts

- Hard X-Ray Imaging Spectroscopy
- High Resolution Spectroscopy of Solar Gamma-Ray Lines
- Hard X-Ray and Gamma-Ray Imaging above 100 keV
- Imaging of Narrow Gamma-Ray Lines
- High Resolution X-ray and Gamma-Ray Spectra of Cosmic Sources
- Hard X-Ray Images of the Crab Nebula with 2arcsecond Resolution

HESSI status

- Vibration and thermal tests passed
- Currently at VAFB for integration into the rocket
- Ship to KSC soon
- Launch March 28, 2001
- Broadcast on NASA Select

HESSI Imager

HESSI Spectrometer

HESSI in flight

HESSI data management plan

- Open data policy:
 - All data on-line within 24 hours
 - Quicklook data
 - Catalog data
 - Data analysis software on Solarsoft
- User acess:
 - Level-0 telemetry data
 - Calibration database
 - Create their own images / lightcurves / spectra by setting some specific parameters
 - Allow making tradeoffs between energy range, time range, and other characteristic parameters
- 1 GB per day + 30% "value added"

HESSI and data integration

- Most research depends on correlation with other data sets:
 - Radio
 - Soft X-Rays
 - H-α
- Collaboration with 29 observatories
- Need standard access
- We don't want to make 29 queries for each observation
 Need standard data analysis interfaces
- We don't want to learn 29 different data analysis software
- Need tools for combination, manipulation of multiple data sets
- Need tools for data mining software
 - similarity searches

Example

- A solar flare occurs at 2001/01/28 10:00:00
- First, check on the web for quick overview
 - Quicklook data
- Then, analysis:
 - HESSI data set
 - o = hsi_i mage()
 - o->plot, time_range = ...

Will get the data in the (nearest) public archive and plot it

- Then: association with other observations?
 - Idoa
 - o = map('hessi', 'sxt', 'ovsa')
 - o->plot, time_range = [a, b], /LIGHTCURVE

Issues

Data retrieval: How to *retrieve* data sets from multiple sources transparently?

Data analysis: How to *integrate* data sets at the analysis level ?

Data retrieval: issues

- General comment: we are not alone
 - Business
 - GIS
 - Issues addressed already
 - Astronomy is behind
- Astronomical data more complex?
 - Calibration
- Technology is available
 - RDBMS
 - ORDBMS
- Spatial Data Structures (B-Trees, Gridfiles, GiST)
- There is no general schema

Data retrieval: search for a solution

- Not yet another web page
- Need a retrieval system:
 - Location independent: don't transfer the data to another site
 - Scalable: add as many sites as possible
 - Flexible: keep the database management local
- Based on GIS experience
- (O)RDBMS
 - Informix, Sybase, Oracle, ...
- Extensions to:
 - Garlic (IBM/DB2)
 - TSIMMIS (Stanford)
 - Telegraph (Berkeley)Cohera (Payware)

Data federation systems

- Leave individual (local) data archives as they are, and build a management layer on top
- Features (from Cohera, Inc.):
 - Location Transparency
 - Real-time Integration
 - Standard Interface
 - Heterogeneous Data Source Support
 - Flexible Replication
 - Unified Security Model
 - Local Autonomy and Policy Management
 - Intelligent Distributed Query Execution
 - Heterogeneous Semantics Support
- Used in business applications

Data federation systems: current work

- Deploy a data federation system in the context of HESSI
- Involvement:
 - HESSI data archive
 - SXT
 - Big BearOVSA
 - Max millennium archive
- "Small" virtual solar observatory first
 - Trimmed to output most science as possible
 - Prototype system uses a commercial data federation system
 - Extend later to larger collaborations

Data analysis: issues

- Integrate the transparent data retrieval into the analysis software
 - e.g. functiion Get(time1, time2) returns observation data beween time t1 and time t2 regardless of the instrument
- Provide common data analysis interface
 - functions Get, GetData, are the same for each instrument
- Provide access to instrument-specific functions
- Provide analysis, and display functions to manipulate data together
 - Zoom, Display

Data analysis: search for a solution

- Object-oriented methods:
 - Each instrument is defined as an object class
 - Each instrument shares a single interface
- More than class extension: design patterns.
 - Standard interfaces
 - Software reuse
 - Clear and consistent design
- Frameworks
 - Implements a basic data analysis unit that can be used over and over again
- Multiple data set analysis:
 - Display of many data sets simultaneously

Data analysis: current work (1)

- Based on Solarsoft
- Standard frameworks for HESSI
- All data types accessible through (I.e. implement) a single interface
- Standard mapping system for solar observations
 (D.M. Zarra):

Data analysis: current work (2)

Display possibilities for multiple data sets:

Data analysis: current work (3)

- Interface for accessing several data analysis systems
 - Based on the framewoks
- Maps as mentioned earlier, but data analysis functions are active

Conclusion: towards the virtual observatory

- Many technologies are already available
 - Data federation systems
 - Object-oriented design patterns
- Build on these systems rather than start from scratch
- Integrate data retrieval into data analysis
- Technology is analogous for many systems
- Stellar and solar astronomy may collaborate on these issues and reuse software